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Overview

I Bayesian games

I Bayesian Nash equilibrium

I Simple (textbook) examples

I Cournot duopoly with asymmetric information

I Jury voting



Bayesian games

I We need to extend our definition of the normal-form
representation of a game to account for incomplete
information

I The normal-form representation of Bayesian games specifies
I Players
I Strategy spaces
I Type spaces
I Beliefs
I Payoff functions

I Bayesian Nash equilibrium is like NE but accounts for
incomplete information about players’ payoffs



Meet the Nature

I Incomplete information raises the necessity to consider players’
beliefs about other players’ preferences, the second-order
beliefs about these (first-order) beliefs, and so on

I We can sidestep this challenge following Harsanyi (1967):
I Players’ preferences are realizations of random variables
I Nature moves first choosing preference types
I Probability distributions of types are common knowledge
I Players only observe subset of realizations (e.g., their own)
I With this trick, from incomplete to imperfect information

Definition. A Bayesian game is made up of 〈I ,Si , ui (.),Θ,F (.)〉,
where I are the players; θi ∈ Θi is player i ’s type, with Θ = Θ1 ×
...×ΘI ; player i ’s payoff function ui (si , s−i , θi ) depends on her type;
pure strategies are given by the functions si (θi ) : Θi → Si ; and
F (θ1, ..., θI ) is the joint probability distribution of players’ types.



Bayesian Nash equilibrium (BNE)

I BNE is just the NE of a properly defined Bayesian game

Definition. A Bayesian Nash equilibrium for the above Bayesian
game is a profile of decision rules (s1(.), ..., sI (.)) such that ∀i ∈ I :

Eθ

[
ui (si (θi ), s−i (θ−i ), θi )

]
≥ Eθ

[
ui (s

′
1(θ1), s−i (θ−i ), θi )

]
for all alternative decision rules s ′i (.) : Θi → Si (in pure strategies).

Proposition. A profile of decision rules (s1(.), ..., sI (.)) is a BNE iff
∀i ∈ I and ∀θ′i ∈ Θi occurring with positive probability:

Eθ−i
[
ui (si (θ

′
i ), s−i (θ−i ), θ

′
i |θ′i )

]
≥ Eθ−i

[
ui (s

′
1(θ′1), s−i (θ−i ), θ

′
i )|θ′i )

]
for all alternative decision rules s ′i (.), and where expectation is taken
over the other players’ types conditional on i ’s realization of her type.



First (textbook) example: DA’s brother

I Same PD but players 2 has two types: Second type, observed
with probability 1− µ, has additional 6-year cost of confessing



First (textbook) example: DA’s brother (contd.)

I Player 1 has no private info, and then 2 strategies: C ,DC

I Player 2 has 4 strategies: (C if 1, C if 2), (C if 1, DC if 2),
(DC if 1, C if 2), (DC if 1, DC if 2)

I C dominant for type-I player 2: s2(I ) = C

I DC dominant for type-II player 2: s2(II ) = DC
I Therefore:

I Eθ[u1(C )] = −5µ− (1− µ)
I Eθ[u1(DC )] = −10µ

I s1 = C iff µ > 1/6

I Unique BNE depending on parametric distribution µ



Second (textbook) example: Information may hurt

I Again, Player 2 has two types: P(ω1) = 1/2, P(ω2) = 1/2

I Payoffs are given (respectively) by:

Type-ω1 player 2

L M R

Player 1 T (1,2ε) (1,0) (1,3ε)

B (2,2) (0,0) (0,3)

Type-ω2 player 2

L M R

Player 1 T (1,2ε) (1,3ε) (1,0)

B (2,2) (0,3) (0,0)

I Where: 0 < ε < 1/2



Second (textbook) example: Information may hurt (contd.)

I Assume there’s no private information
I s2 = L as br2(T ) = L and br2(B) = L
I s1 = B as br1(L) = B
I Equilibrium outcome is (2,2)

I Assume there’s private information (2 knows her type)
I Type ω1: s2(ω1) = R as it’s dominant
I Type ω2: s2(ω2) = M as it’s dominant
I Player 1: br1(s2(.)) = T
I Equilibrium outcome is (1,3ε)
I As both 1 and 3ε are smaller than 2, everybody is worse off

with incomplete information



Cournot duopoly with asymmetric information

I Two firms are engaged in Cournot competition, but one
firm has private information about its costs

I Firm 1’s cost function is c1(q1) = cq1
I Firm 2’s cost function is

I c2(q2) = cHq2 with probability θ, and
I c2(q2) = cLq2 with probability 1−θ, where cL < cH

I Firm 2 knows which cost function it has, but firm 1 does not
→ It only knows the distribution of firm 2’s costs

I Both firms know the aggregate demand function, which is
described by p(Q) = a−Q

I How do we find the Bayesian Nash Equilibrium of this game?



Cournot duopoly with asymmetric information (contd.)

I Let q∗1 be firm 1’s optimal quantity choice

I Let q∗2H and q∗2L be firm 2’s optimal choices when it has high
and low costs, respectively

I If firm 2’s cost is ci , it will choose q∗2i by maximizing

[(a− q∗1 − q2)− ci ]q2 = [a− q∗1 − ci ]q2 − q22

I Firm 1 will choose q∗1 by maximizing

θ[(a− q∗2H − q1)− c]q1 + (1− θ)[(a− q∗2L − q1)− c]q1

= [a− θq∗2H − (1− θ)q∗2L − c]q1 − q21



Cournot duopoly with asymmetric information (contd.)

I The FOCs for these 3 optimization problems are

q∗2H = 1
2 [a− q∗1 − cH ]

q∗2L = 1
2 [a− q∗1 − cL]

q∗1 = 1
2 [a− θq∗2H − (1−θ)q∗2L − c]

I Solving these equations yields

q∗1 = 1
2 [a− 1

2θ(a− q∗1 − cH)− 1
2(1− θ)(a− q∗1 − cL)− c]

or q∗1 = 1
3 [a− 2c + θcH + (1− θ)cL]

and q∗2H = 1
3 [a− 2cH + c] + 1

6(1− θ)(cH − cL)

q∗2L = 1
3 [a− 2cL + c]− 1

6θ(cH − cL)

I The strategies (q∗1 , q
∗
2H , q

∗
2L) constitute a Bayesian Nash

equilibrium of the game



Cournot duopoly with asymmetric information (contd.)

I So far, we have not allowed for firm 2 to reveal its type to
firm 1

I If it could, would firm 2 reveal its type to firm 1?

I To see this, let us contrast the BNE of incomplete-information
Cournot to the NE complete-information Cournot where firm
2’s costs are cH

(q∗∗1 , q
∗∗
2 ) = (13 [a− 2c+ cH ], 13 [a− 2cH + c])

I Note that q∗2H > q∗∗2
I When firm 2’s costs are high, firm 2 (1) produces more (less)

in the incomplete-information game than it would in the
complete-information game



Cournot duopoly with asymmetric information (contd.)

I In the complete-information game, firm 1 knows that firm 2
has high costs, and it exploits firm 2’s high costs by increasing
its own output

I In the incomplete-information game, firm 1 does not know
whether firm 2 has high or low costs, so it produces a lower,
“intermediate” level of output

I As a result, a firm 2 with high costs exploits its informational
advantage

I The reverse happens with the complete-information game
where firm 2’s costs are cL

I In the incomplete-information game, high-cost firm 2 has the
incentive to keep private the information about its costs

I On the contrary, a low-cost firm 2 has the incentive to
disclose information



Jury voting

I Pool of jurors (i ∈ {1, ..., I}) must decide whether a defendant
is guilty or innocent

I True state of the world (unobserved by jurors) is one of the
two: ω ∈ {G ,B} (where B stands for innocent/blameless)

I Common prior about state of the world: Prob(ω = G ) = π

I But then each juror receives (private) signal about state of
the world: si ∈ {g , b}

I Prob(s = g |ω = G ) = p
I Prob(s = b|ω = G ) = 1− p
I Prob(s = b|ω = B) = q
I Prob(s = g |ω = B) = 1− q

I In order for private signals to be informative, we must have:
I p > 1/2, q > 1/2
I and hence p > 1− q

I Each signal realization is observed only by the receiving juror,
and it thus ends up being her type



Jury voting (contd.)

I Each juror can vote either to convict or to acquit the
defendant: vi ∈ {c , a}

I Voting is by unanimity, that is, the defendant is convicted if
the I-vector voting profile is v = (c , ..., c), and she’s acquitted
otherwise

I To close the representation of the Bayesian games, we need to
specify the jurors’ payoffs:

I ui = 0 if v = (c , ..., c) & ω = G or if v 6= (c , ..., c) & ω = B
I ui = −z if v = (c , ..., c) & ω = B
I ui = −(1− z) if v 6= (c , ..., c) & ω = G
I With 0 ≤ z ≤ 1

I If r > z , the juror with posterior r prefers the defendant to be
convicted

I Clearly, z → 1 for Cesare Beccaria-like preferences, and z → 0
for Avengers-like preferences



Jury voting (contd.)
One juror

I We want to check if sincere/informative strategy (i.e., voting
according to the received signal) is an equilibrium

I The juror gets either b or g as signal. By Bayes’ rule:

r = Prob(ω = G |s = b) =
π(1− p)

π(1− p) + (1− π)q
≡ z1

r = Prob(ω = G |s = g) =
πp

πp + (1− π)(1− q)
≡ z1

I If z ≥ z1: acquittal is at least as good as conviction after
receiving b

I If z ≤ z1: conviction is at least as good as acquittal after
receiving g

I Therefore, sincere/informative strategy is optimal iff:
z1 ≤ z ≤ z1



Jury voting (contd.)
Two jurors

I We want to check if sincere/informative strategies are BNE

I Postulate that juror 2 votes a if b and c if g

I Consider the problem of type-b juror 1

I If juror 2 receives b, juror 1’s vote has no effect (as you need
unanimity for conviction)

I Therefore, juror 1 must update her posterior also to infer the
probability of being pivotal

r = Prob(ω = G |s1 = b, s2 = g) =
πp(1− p)

πp(1− p) + (1− π)(1− q)q
≡ z2

I If z ≥ z2: type-b juror 1 votes a



Jury voting (contd.)
Two jurors (contd.)

I Consider the problem of type-g juror 1

r = Prob(ω = G |s1 = g , s2 = g) =
πp2

πp2 + (1− π)(1− q)2
≡ z2

I If z ≤ z2: type-g juror 1 votes c

I Therefore, sincere/informative strategies are BNE iff:
z2 ≤ z ≤ z2

I Note that z2 > z1
I Less likely than with one juror to vote a if b
I Why? Each juror less worried about convicting an innocent

because she may not be pivotal
I Problem get worse as I increases (free-riding annihilates Cesare

Beccaria)

I Note also that z2 > z1



Where are we?

I We have (briefly) studied static games of incomplete
information (or Bayesian games)

I References:
I Lecture slides → 10 (final folder)
I Osborne → chapter 9
I Gibbons → chapter 3

I But the most interesting class of games of incomplete
information involves some dynamics (and thus some
information transmission). That’s our next topic


