Government 2005 Formal Political Theory I Lecture 1

Instructor: Tommaso Nannicini Teaching Fellow: Jeremy Bowles

Harvard University

August 30, 2017

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

This course

- ► Topics:
 - Introduction to game-theoretic toolkit
 - Applications in political science & political economy
- Goals:
 - Students lose fear of game theory
 - Students acquire working knowledge of games of complete (and easy incomplete) information

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- First in a two-course sequence
- Evaluation:
 - Problem sets (40%)
 - Final exam (40%)
 - Paper (20%)

Today's class

What is game theory?

- Why is it used in political science?
- The rational choice controversy
- What is a game?
 - Basic definition
 - Normal (or strategic) form vs. extensive form

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Classification(s) of games
- Let's play ball! Simple (but useful) games
- Pure-strategy Nash equilibrium

Game theory

- ► Game theory ⇒ formal analysis of the behavior of interacting decision makers
 - Decision theory = branch of math analyzing decision problem of single individual (external environment as primitive)
 - Game theory = interactive decision theory
- ► Strategic interdependence ⇒ each individual's welfare depends on her actions + others' actions. And therefore her best actions depend on what she expects the others to do
- A few uses of game theory:
 - How much money lobbies donate to influence policy making
 - How politicians choose platforms to win elections
 - How legislators bargain over policy
 - Allocation of troops and arms in battles and wars
 - How we can signal our ability to prospective employers
 - Whether protesters should join street demonstrations

Rational choice

- Rational choice \Rightarrow part of many models in game theory
 - Decision maker chooses best action based on her preferences
 - No qualitative restriction on preferences
 - ► Enough to assume ⇒ completeness + consistency
 - Complete prefs: $a \succ_i b$ or $a \prec_i b$ or $a \sim_i b$, $\forall i$ and $\forall (a, b) \in A_i$
 - Consistent (or transitive) prefs: if $a \succ b$ and $b \succ c \Rightarrow a \succ c$
- No cycles and no effect of irrelevant alternatives, but it can accommodate: altruism, envy, myopic behavior
- Utility function as "preference indicator function"
 - u(a) > u(b) iff *i* prefers *a* to *b* $(a \succ_i b)$
 - Only ordinal information (no intensity)
- How meaningful? It depends on the purpose. No theory right or wrong, some useful

- E.g., London's subway map
- E.g., Newtonian (vs relativistic) mechanics

Methodological individualism

- Claim: game theory should be used in formal models of social sciences that adhere to methodological individualism
 - Explain social phenomena as the results of the actions of many agents (chosen according to some consistent criterion)
- Max Weber (*Economy and Society*, 1922), taking about social collectivities, such as states, associations, social groups:
 - "In sociological work collectivities must be treated as solely the resultants and modes of organization of the particular acts of individual persons, since these alone can be treated as agents in a course of subjectively understandable action"
- Without explaining why people do what they do, hard to understand larger social phenomena
- This doesn't mean to privilege individual over collective, but privilege the action-theoretic level of explanation

What is a game?

A game has these elements:

- (1) Set of players I (i = 1, ..., I)
- (2) Set of actions A_i
- (3) Set of outcomes Y
- (4) Extensive form ϵ , determining set of possible paths of play Z

- (5) Outcome function $g: Z \to Y$
- (6) Preferences over outcomes $v_i: Y \to \mathbb{R}$

(1)-(5) are the rules of the game(6) usually utility functions

Extensive vs normal form representation

- Extensive-form representation uses game tree to specify rules of the game (1)-(5) by means of *decision nodes* and *branches*, and includes payoffs (6) of all players in *terminal nodes*
- Crucial element: information set, defined as collection of decision nodes at which the player doesn't know where she exactly is when she moves
- ► Normal-form (or strategic-form) representation rests on the concept of strategy → Complete contingent plan that says what a player will do at each of her information sets. Formally:

Define \mathcal{H}_i as set of *i*'s information sets, \mathcal{A} set of possible actions, $C(H) \subset \mathcal{A}$ subset of actions possible at information set H. Strategy for *i* is a function $s_i : \mathcal{H}_i \to \mathcal{A}$ such that $s_i(H) \in C(H)$, $\forall H \in \mathcal{H}_i$ Extensive vs strategic form representation (contd.)

- In *I*-player game, convenient to represent a profile of players' strategy choices by means of single vector: *s* = (*s*₁, ..., *s*_{*l*}), or in short *s* = (*s*_i, *s*_{−i})
- Pure-strategy profile *s* belongs to the strategy space *S*: $s \in S = S_1 \times ... \times S_i$ (and $s_i \in S_i$)
- Normal form representation describes a game in terms of strategies and their associated payoffs. Formally:

For a game with I players, the normal form representation Γ_N specifies a set of strategies S_i for each i and a payoff function $u_i(s_1, ..., s_I)$ giving the utility levels associated with the (possibly random) outcome arising from $(s_1, ..., s_I)$. That is: $\Gamma_N = \langle I, S_i, u_i(.) \rangle$

This definition rests on definition of pure strategies, we'll easily extend it as soon as we define mixed strategies

Example: Prisoner's dilemma

		Prisoner 2	
		Mum	Fink
Prisoner 1	Mum	(-1,-1)	(-9, 0)
	Fink	(0,-9)	(-6,-6)

Normal form representation of the game is a specification of players, players' strategy spaces, and players' payoff functions

- Players: Prisoner 1 and prisoner 2
- Strategy spaces: Mum, Fink
- Payoff functions: As indicated by payoff matrix

Example: Prisoner's dilemma (contd.)

Extensive-form representation of the game uses game tree:

The circle captures the information set of prisoner 2 (initial node is the information set of prisoner 1). If all information sets are singleton, we have game of perfect information

Classification(s) of games

- 1. Cooperative vs non-cooperative games
 - Cooperative game theory does not model bargaining, but considers how much surplus each coalition of players can get with binding agreement, and division of surplus that may arise
 - Non-cooperative game theory assumes binding agreement are not feasible, or that the bargaining process leading to a binding agreement is formalized in a larger game
 - Non-cooperative game theory is <u>not</u> the study of non-cooperative behavior, but rather a method of analysis
- 2. Static vs dynamic games
 - Static = each player moves once and all players move simultaneously (or with no information on others' moves)
 - Dynamic = moves are sequential and some players may observe (at least partially) the behavior of the others
 - Usually: extensive form for dynamic games and normal form for static games, but it's just convenience, not characteristic of the game; every type of game can get every type of representation

Classification(s) of games (contd.)

3. Perfect, almost perfect, and asymmetric information

- Dynamic game has perfect information if each player, when it's her turn to move, is informed of all previous moves (including the realizations of chance moves)
- If some moves are simultaneous but each player can observe all past moves, we have almost perfect information (or a game with "observable actions")

- Game with imperfect info has asymmetric information if different players have different info on past moves
- These assumptions are entailed in the rules of the game

Classification(s) of games (contd.)

- 4. Complete vs incomplete information
 - Event E is common knowledge if everybody knows E, everybody knows that everybody knows E, and so on for all iterations of "everybody knows that"
 - Game Γ_N features complete information if it's common knowledge that Γ_N is the actual game to be played
 - Conversely, the game features incomplete information
 - These are not assumptions on the rules of the game, but on players' interactive knowledge about rules and preferences
 - In most real-world applications, either the outcome function or the players' preferences are not common knowledge

Equilibrium solution concepts

- Rationality not enough to predict what happens
- We must assume beliefs to be mutually consistent
- Solution concept = formal rule for predicting the game
- Depending on the game structure we use different equilibrium solution concepts (but be aware that they are just shortcuts of more general hypotheses):

	Complete information	Incomplete information
Static	Nash	Bayesian Nash
Dynamic	Subgame-perfect Nash	Perfect Bayesian

Nash equilibrium

► Nash equilibrium ⇒ players' beliefs about each other strategies are correct and each player best responds to her beliefs. <u>As a result:</u> each player uses strategy that is best response to the strategy used by the others

► Formally:

A strategy profile $s = (s_1, ..., s_l)$ constitutes a Nash equilibrium of the game $\Gamma_N = \langle I, S_i, u_i(.) \rangle$ if for every player i = 1, ..., I:

$$u_i(s_i, s_{-i}) \geq u_i(s'_i, s_{-i}), \forall s'_i \in S_i$$

Tragedy of the commons (again, prisoner's dilemma)

		US	
		Cooperate	Defect
China	Cooperate	(2,2)	(0,3)
	Defect	(3,0)	(1,1)

- Normal form representation of the game with players, players' strategy spaces, and players' payoff functions
 - Players: US and China / I = (1, 2)
 - Strategy space: Cooperate, Defect / $S_i = (C, D)$
 - Payoff functions: As indicated by payoff matrix $/ u_i = u(s_1, s_2)$

Strategic substitutes (chicken's game)

		France	
		Cooperate	Defect
US	Cooperate	(2,2)	(1,3)
	Defect	(3,1)	(0,0)

- Normal form representation of the game with players, players' strategy spaces, and players' payoff functions
 - Players: US and France / I = (1, 2)
 - Strategy space: Cooperate, Defect / $S_i = (C, D)$
 - Payoff functions: As indicated by payoff matrix $/ u_i = u(s_1, s_2)$

Strategic complements (assurance dilemma)

		Government	
		Cooperate	Defect
Protesters	Cooperate	(3,3)	(0,2)
	Defect	(2,0)	(1,1)

- Normal form representation of the game with players, players' strategy spaces, and players' payoff functions
 - Players: Protesters and government / I = (1, 2)
 - Strategy space: Cooperate, Defect / $S_i = (C, D)$
 - Payoff functions: As indicated by payoff matrix $/ u_i = u(s_1, s_2)$

The generals' dilemma (matching pennies)

		Defender	
		Mountains	Plains
Attacker	Mountains	(-1,1)	(1,-1)
	Plains	(1,-1)	(-1,1)

- Normal form representation of the game with players, players' strategy spaces, and players' payoff functions
 - Players: Attacker and defender / I = (1, 2)
 - Strategy space: Mountains, Plains / $S_i = (M, P)$
 - Payoff functions: As indicated by payoff matrix $/ u_i = u(s_1, s_2)$