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Overview

I Dynamic games with complete and perfect information
I Market entry
I Sequential voting
I Centipede game
I Stackelberg competition

I Dynamic games with complete but imperfect information
I Market entry (modified)
I Bank runs

I Formal definitions and useful general results
I Extensive-from representation
I Subgame-perfect Nash equilibrium
I Single-deviation principle

I Sequential bargaining
I Finite (with patient or impatient players)
I Infinite (with impatient players)



Finite games in extensive form (informal definition)

A finite (dynamic) game in extensive-form consists of:

I A finite set of players

I A finite set of histories/nodes (with some of them terminal)

I Player functions (i.e., who gets to decide at each non-terminal
node)

I The set of available strategies of every (deciding) player in
each non-terminal node

I Payoff functions (i.e., who gets what at terminal nodes)

I Information sets that individuals have in every node



Sequential rationality (informal definition)

In dynamic games, the idea of credible vs non-credible threats (or
promises) is crucial

The solution concept of Nash equilibrium is not equipped to deal
with this (see next examples)

We need to introduce some concept of sequential rationality to
remove irrational (off-equilibrium) choices

Two solution concepts that will take care of that:

I Backward induction, which we can apply in games with
complete and perfect information

I Subgame perfection, which we can apply in contexts with
complete but imperfect information



A simple example of market entry

I To illustrate how backward induction works, consider the
following simple game with perfect information

I At time zero, a potential “entrant” (E) decides whether to
enter the market or not (“in” vs “out”)

I At time one, after observing the entry decision, the
“incumbent” firm (I) decides whether to accommodate the
entry (“soft”) or to fight it back with an aggressive market
strategy (“hard”)

I The history of the game, the decision nodes, the information
sets, and the payoffs associated with the terminal nodes are
captured by the following game tree



A simple example of market entry (contd.)
I Extensive-form representation of the game

E	

I	

in	

out	

so(	

hard	

(1,1)	

(-3,-1)	

(0,2)	



A simple example of market entry (contd.)

I Strategic-form representation has got four strategy profiles, as
combinations of {in, out} and {soft if in, hard if in}

I Two Nash equilibria: (out, hard if in) and (in, soft if in)
I The first is based on the non-credible threat of retaliation

I Backward-induction solves this problem:
I Starting from last decision node, we see that playing “hard” is

irrational for the incumbent if we got there
I The entrant anticipates it and plays “in” at the initial decision

node
I (in, soft if in) is the only Nash equilibrium consistent with this

sequential rationality



Sequential voting

I Suppose players 1, 2, and 3 are legislators deciding whether or
not to vote themselves a pay-raise

I Each player prefers that the pay-raise passes, but would like to
vote against it to avoid resentment from his constituents

I So, for example, player 1’s payoffs are:

π1 =


1 if v1 = N, v2 = Y , and v3 = Y

1− c if v1 = Y , and v2 = Y or v3 = Y or both

0 if v1 = N, and v2 = N or v3 = N or both

−c if v1 = Y , v2 = N and v3 = N

where 0 < c < 1 represents the “constituent resentment” cost

I Analogous expressions hold for players 2 and 3

I Suppose the players vote in a fixed order, 1 then 2 then 3
(and they cannot change their votes)



Sequential voting (contd.)
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Sequential voting (contd.)

I Using backward induction, we can solve the game as follows

I If players 1 and 2 have both voted Y , then player 3 will vote
N and receive his highest payoff: The bill passes and she gets
to vote against it

I If 1 and 2 have both voted N, then 3 will vote N and the bill
fails

I If 1 and 2 have split their votes, then 3 votes Y and the bill
passes

I Note that, if players 1 votes N, the votes of players 2 and 3
are strategic complements



Sequential voting (contd.)

I Thus, from player 2’s point of view, the game really looks like
this when it is her turn to move:

Y2 (1‐c, 1‐c , 1)

N
Y

(1 c 1 1 c)

Y

N
1

(1‐c, 1 , 1‐c)

(1 1‐c 1‐c)N

2

(1, 1‐c , 1‐c)

N
2

(0, 0 , 0)



Sequential voting (contd.)

I Continuing the backward induction:
I If player 1 votes Y then player 2 will vote N
I If 1 votes N, then 2 will vote Y

I So, from player 1’s point of view, the game is as follows when
it is her turn to move:

Y (1‐c 1 1‐c)

N

1
(1 c, 1 , 1 c)

N (1, 1‐c , 1‐c)



Sequential voting (contd.)

I Player 1 then votes N

I By voting N she forces players 2 and 3 to do the “dirty work”
of passing the pay-raise

I She can anticipate that since it is in their own best interests
to do this, and they will

I The (unique) backward-induction equilibrium is (N,Y ,Y )

I There aren’t non-credible threats off the equilibrium path

I What are the Nash equilibria if the legislators vote
simultaneously? (We solved this in class)



Centipede game

I Consider the following game

I There is a pile of money on a table, which grows over time

I Players A and B take turns deciding whether to take the
money that is already there, or to let the pile grow larger and
hope to take it at a later date

I The game lasts 4 turns and therefore the game tree is as
follows:

leave leave leave leave

(4 0)

A B A B

take take take take

(4,0)

take take take take

(1,0) (0,2) (3,0) (0,4)



Centipede game (contd.)

I Solving by backward induction, we see that player A must
take whatever money there is on the table at the beginning of
the game

I If the game reaches the final turn, then B will definitely play
“take”

I Anticipating this, if the game reaches turn 3, then A will
definitely play “take”

I Anticipating this, if the game reaches turn 2, then B will
definitely play “take”

I Anticipating this, A will play “take” at turn 1



Centipede game (contd.)

I This behavior raises an important and difficult issue about
backward induction and sequential rationality

I As implemented, backward induction requires that each player
assumes that all other players will be rational in all future
moves, even if they have played irrationally in the past

I Suppose the centipede game has reached turn 2
I Then, A has played irrationally at turn 1
I If B assumes that A will play rationally at turn 3 (and

therefore will play “take”), then B should play “take” at turn 2
I But, should B make such an assumption?
I After all, A has demonstrated strange behavior once already;

maybe she will do it again
I And if she does, then B will get to play t at turn 4 and receive

a payoff of 4 rather than 2

I The same puzzle arises for A if the game reaches turn 3



Stackelberg duopoly

I Consider the Cournot duopoly model, but suppose firm 1
chooses its quantity first, and firm 2 observes firm 1’s choice
before choosing its quantity

I The game tree is:

1 22
q 1 q 2 (p(Q)q 1‐cq 1 , 

p(Q)q ‐cq )p(Q)q 2 cq2)



Stackelberg duopoly (contd.)

I To solve the game, consider firm 2’s optimization problem
given any choice of q1. Firm 2’s profits are

π2(q1, q2) = (a− c − q1)q2 − q22

I Differentiating and setting π′2 = 0 yields the best-response
curve for firm 2:

q̃2(q1) =
a− c − q1

2

assuming q1 < a− c

I If q1 > a− c , there is a corner solution with q̃2(q1) = 0

I Also, note that SOC −2 < 0 and thus q̃2(q1) is an argmax



Stackelberg duopoly (contd.)

I Firm 1 can solve this problem also, and therefore anticipates
what firm 2 will do

I Applying backward induction, firm 1 will choose q1 to
maximize:

π̃1(q1) = π1(q1, q̃2(q1))

= [a− c − q̃2(q1)]q1 − q21

= [a− c − (a− c − q1)/2]q1 − q21

= 1
2 [(a−c)q1 − q21 ]

I Differentiating this and setting π̃′1 = 0 yields firm 1’s optimal
choice:

q∗1 =
a− c

2
I And, firm 2’s best-response to this choice is

q∗2 = q̃2(q∗1) =
a−c

4



Stackelberg duopoly (contd.)

I (q∗1 , q
∗
2) = (a−c2 , a−c4 ) is the backward-induction equilibrium

of the dynamic game

I The equilibrium quantity/price and each firm’s profits are:
QS = 3

4(a− c) > 2
3(a− c) = QC

p(QS) = 1
4(a + 3c) < 1

3(a + 2c) = p(QC )
πS1 = 1

8(a− c)2 > 1
9(a− c)2 = πC1

πS2 = 1
16(a− c)2 < 1

9(a− c)2 = πC2
I The solution differs from the Nash equilibrium of the

simultaneous-move game analyzed earlier in several ways

I Total output is higher, so price and total profits are lower

I Firm 1’s profits are higher, but firm 2’s profits are lower

I There is a first-mover advantage for firm 1



Games of complete but imperfect information

I In the games above, players never move simultaneously at any
point of their sequential interaction

I To allow for simultaneous moves, we must allow for
imperfect information

I This means that, at some nodes in the game, players do not
know what other players are doing

I In other words, information sets are no longer singletons

I We need to expand the equilibrium concept from pure
backward induction to subgame perfection (which can be
seen as a generalized concept of backward induction)



Subgame perfection (informal definition)

I A subgame-perfect Nash equilibrium is a strategy profile in
which players’ strategies constitute a Nash equilibrium in
every subgame of the game

I A subgame is a part of the game that is itself a game

I A subgame has all of the necessary components of a game,
and could be analyzed as a game by itself

I Subgames start at each information set containing a single
decision node, contain all subsequent nodes and only them,
and cannot cut across information sets

I Instead of backward induction through every node of the
game, we will apply backward induction through every
subgame of the game



A simple example of market entry (modified)
I Let’s modify the market entry game to allow for simultaneous

actions after entry:

E	

E	

in	

out	

so(	

hard	

(0,2)	

I	

so(	

so(	

hard	

hard	

(3,1)	

(-2,-1)	

(1,-2)	

(-3,-1)	



A simple example of market entry (modified and contd.)

I This game contains two subgames: The entire game itself and
the simultaneous-move game taking place after entry

Incumbent

Soft Hard

Entrant Soft (3,1) (-2,-1)

Hard (1,-2) (-3,-1)

I Starting from the last subgame, we realize that it has a
unique Nash equilibrium: (soft, soft)

I Anticipating this at the initial decision node, the entrant will
definitely play “in”

I The (unique) subgame-perfect Nash equilibrium is (in, soft if
in) from E and (soft if in) from I



A simple example of market entry (modified and contd.)

I If we represent the game in strategic form

Incumbent

Soft if In Hard if In

Entrant Out, Soft if In (0,2) (0,2)

Out, Hard if In (0,2) (0,2)

In, Soft if In (3,1) (-2,-1)

In, Hard if In (1,-2) (-3,-1)

I We find three NE: (out, soft if in) & (hard if in); (out, hard if
in) & (hard if in), (in, soft if in) & (soft if in)

I But the first two are based on the non-credible threat of “hard
if in” from incumbent

I What if multiple equilibria in a subgame?

I What if ties in single-node individual decision problems?



Bank runs

I Two players have each put $3 in a bank, and the bank has
invested their funds in a three-period project

I The project pays $10 (out of $6 of initial investment) if
reaches the third period

I Each player must decide whether to withdraw (W ) her money
in the first and second period or not (D)

I If neither players withdraw her funds in period 1 the project
matures, otherwise only $4 can be recovered

I If neither players withdraw her funds in period 2 the project
cashes fully

I However, if any player withdraws at any period she can get
her full amount (the deposit in period 1 and the capital gain
in period 2) while the other just gets the residual



Bank runs (contd.)

(5, 5)
D

D

W

W

D

W

1
2

2

D

W

2

D2
(3, 7)

(2,2)

(3,1)

(1,3)

1

W

(7, 3)

(5, 5)

D

W

I Not all information sets are singletons ⇒ imperfect
information

I Two subgames: the game itself and the simultaneous-move
game at period 2



Bank runs (contd.)

I We find subgame perfect equilibria by solving backward (one
subgame at the time)

I The second period, which begins at the second node for player
1, is a subgame of the whole game

I This subgame has a unique Nash equilibrium: (W,W)

W D

W (5,5) (7,3)

D (3,7) (5,5)

I So, in the first period both players expect that if the game
reaches the second period the final payoffs will be (5,5)



Bank runs (contd.)

I The first period can then be reformulated as:

D

W

D

W

1
2

2
(2,2)

(3,1)

(1,3)

(5, 5)

I In this reformulated game there are two Nash equilibria:
(W,W) and (D,D)

I This is easily seen by looking at the strategic form:

W D

W (2,2) (3,1)

D (1,3) (5,5)



Bank runs (contd.)

I So, there are two subgame-perfect Nash equilibria to the
whole game: (W,W,W,W), and (D,D,W,W)

I We have a bank run equilibrium and
normal-functioning-of-banks equilibrium

I It all really depends on players’ expectations about what other
players will do



Extensive-form representation (reloaded)

Definition. Define ΓE = 〈N,H, I , p(.), u(.)〉 as the extensive-form
representation of the game, which must contain these elements:

I set of players, N;

I set of histories/nodes, H, containing also the terminal
histories/nodes HT and the initial history/node H0 = ∅;

I player function, mapping each decision node h to the player
who takes action there, p(h) : H \ HT → N;

I information sets, I ⊆ H \ HT , such that p(h) = p(h′) if h and
h′ are in the same information set;

I payoff functions, ui (h) : HT → R for each player i ∈ N.



Subgame-perfect Nash equilibrium (reloaded)

Definition. Define Hi as the subset of histories for which p(h) = i
and A(h) as the set of actions available at h. Then, for each player
i we define a strategy profile as: si (h) : Hi → A(h). [Of course,
si (h) = si (h

′) if h and h′ are in the same information set.]

Definition. A subgame of ΓE is a subset of the game such that:

1. it begins with information set containing single decision node,
and contains all subsequent decision nodes (and only them);

2. if h is in the subgame, every h′ ∈ I (h) is also in the subgame,
where I (h) is the information set that contains h.

Definition. Given ΓE , s(.) is a subgame-perfect Nash equilibrium
if in every subgame of ΓE the restricted strategy profile s(.) to the
subgame is a Nash equilibrium of the subgame.



Useful general results

Theorem. Every finite ΓE in which every information set is a sin-
gleton has a subgame-perfect Nash equilibrium. The equilibrium is
unique if no player is indifferent between any two histories.

Theorem. In every finite ΓE in which every information set is a
singleton, the set of subgame-perfect Nash equilibria coincides with
the subset of Nash equilbria that can be derived through backward
induction.

Theorem (single-deviation principle). A strategy profile s(.) is
subgame-perfect if and only if no player has an incentive to deviate
at any single information set.



Discounting 101

I In dynamic games, discounting of future values is often a key
ingredient

I Define δ as the one-period discount factor, that is, if δ = 0.95
one dollar tomorrow is worth 95 cents today

I The discount factor is linked to the discount rate:
δ = 1/(1 + r)

I After t periods: δt = 1/(1 + r)t

I If you are discounting an infinite flow of constant one-period
amounts, it’s important to remember these limits:

I
∑∞

t=0 δ
t = 1/(1− δ)

I By substituting δ = 1/(1 + r):
∑∞

t=0 δ
t = (1 + r)/r



Ultimatum game

I Two players: i ∈ {1, 2}
I 1 makes offer on how to split sum equal to $1 (x for herself)

I 2 either accepts (A) or rejects (R) the offer

I In case of rejection, they both get zero

I Histories: (x ,Z ) with 0 ≤ x ≤ 1 and Z ∈ {A,R}
I Player function: p(∅) = 1, p(x) = 2 for any x
I Payoff functions:

I U1 = x if Z = A, zero otherwise
I U2 = 1− x if Z = A, zero otherwise

1 2

(x,1‐x)

(0,0)

x

A

R



Ultimatum game (contd.)

I There are two subgames, which start at each decision node
I In the last subgame:

I either 2 accepts every 1− x ≥ 0
I or 2 accepts 1− x > 0 and rejects 1− x = 0

I Going backward to 1’s decision:
I 1 offers x = 1 and 2 accepts every 1− x ≥ 0 ⇒ this is SPNE
I if 2 accepts 1− x > 0 and rejects 1− x = 0 ⇒ no offer by 1 is

optimal ⇒ the above SPNE is unique

I What happens if $1 is made up of indivisible units/cents?

I What happens if 2 cannot reject the offer? (Dictator game)

I What happens if 1 gets x even if 2 rejects? (Impunity game)

I Does it change if 2 can make costly investment to increase $1
before the ultimatum game starts? (Holdup problem)



Ultimatum game (contd.)

I Before, we assumed only one offer (k = 1)

I What if 2 gets the chance of making an offer too (k = 2)

I After rejecting x , 2 can offer y to 1 and take 1− y for herself

1

2

2

1

(x,1‐x)

(y,1‐y)

(0,0)

x

y

A

R

A

R



Ultimatum game (contd.)

I The subgame starting with 2 making an offer is an ultimatum
game itself

I Its solution is that 2 offers y = 0 and 1 accepts every y

I Reasoning backward, 2 is going to reject any x > 0

I In all SPNE, 2 gets $1 and 1 nothing

I In this situation (or for any even k), 1 is powerless because 2
is the last guy with the chance to make an offer (vice versa
with K = 1 or any odd k)



Finite sequential bargaining

I Before, we assumed patient players (no discounting)

I Let’s assume player i has discount factor δi (impatient players)

1

2

2

1

(x,1‐x)

(δ1y, δ2(1‐y))

(0,0)

x

y

A

R

A

R



Finite sequential bargaining (contd.)

I Again, in the last ultimatum game, 2 offers y = 0 and 1
accepts every y

I Reasoning backward, 2 accepts any x s.t.
(1− x) ≥ δ2(1− y) = δ2

I Reasoning backward, 1 offers x = 1− δ2 (offering more for
herself is irrational because she ends up with 0, offering less is
irrational too)

I The final outcome is (1− δ2, δ2) and no rejection takes place
in equilibrium

I More precisely, the SPNE is:
I 1 offers x = 1− δ2
I 2 accepts any 1− x ≥ δ2
I 2 offers y = 0
I 1 accepts any y ≥ 0

I The larger δ2, the more powerful is player 2



Finite sequential bargaining (contd.)

I Now, assume k = 3: that is, 1 is the first and last guy who
alternates making an offer

I The last offer would lead to: (δ21 , 0)

I Therefore, one stage before, 2’s offer would lead to:
(δ21 , δ2(1− δ1))

I Therefore, at the first stage, 1’s offer is:
(1− δ2(1− δ1), δ2(1− δ1))

I This offer (and anyone providing a larger amount to 2, for
what it’s worth) is accepted by 2

I Again, patience pays off



Recursivity of this problem (with k odd)

Proposing Player 1 Offered to Player 2 Offered
player discounting player 1 discounting to player 2

1 δk1 1 δk2 0

2 δk−11 δ1 δk−12 (1− δ1)

1 δk−21 1− δ2(1− δ1) δk−22 δ2(1− δ1)

2 δk−31 δ1[1− δk−32 1− δ1[1−
δ2(1− δ1)] δ2(1− δ1)]

1 δk−41 1− δ2{1− δ1[1− δk−42 δ2{1− δ1[1−
δ2(1− δ1)]} δ2(1− δ1)]}

If offers by 1 could go on indefinitely:

1− δ2 + δ1δ2 − δ1δ22 + δ21δ
2
2 − ...

M∑
m=0

(δ1δ2)m − δ2
M∑

m=0

(δ1δ2)m

Taking the limit with M →∞, we get:

1

1− δ1δ2
− δ2

1− δ1δ2
=

1− δ2
1− δ1δ2



Infinite sequential bargaining

I Let’s assume the 2-player bargaining goes on up to infinity
(this makes a lot of sense once you keep in mind that Chuck
Norris has counted to infinity, twice)

1

2

2

1

(δ1(k‐1)x, δ2(k‐1)(1‐x))

(δ1(k‐1)y, 
δ2(k‐1)(1‐y))

x

y

A

R

A

R



Infinite sequential bargaining (contd.)

I We can no longer use backward induction (even generalized)

I But we can exploit the stationary structure of the problem by
assuming a stationary solution (i.e., one where choices are
the same in each time-period)

I Let’s prove that the following is the (unique) SPNE

SPNE of infinite sequential bargaining.
I 1 proposes (x , 1− x) with

I x = (1− δ2)/(1− δ1δ2)
I 1− x = δ2(1− δ1)/(1− δ1δ2)

I 2 accepts at least 1− x
I 2 proposes (y , 1− y) with

I y = δ1(1− δ2)/(1− δ1δ2)
I 1− y = (1− δ1)/(1− δ1δ2)

I 1 accepts at least y



Infinite sequential bargaining (contd.)
How did we come out with those numbers above?

I First way: form the recursive argument discussed above

I Second way: define vi as the continuation value of the game
when i is the proposer (they don’t depend on time in a
stationary equilibrium)

I 1 must offer: x = 1− δ2v2, x = δ2v2
I As the offer is accepted: v1 = 1− δ2v2
I 2 must offer: y = δ1v1, 1− y = 1− δ1v1
I As the offer is accepted: v2 = 1− δ1v1
I As a result:

I v1 = (1− δ2)/(1− δ1δ2)
I v2 = (1− δ1)/(1− δ1δ2)



Infinite sequential bargaining (contd.)
Let’s prove that this is indeed a SPNE

I We use the single-deviation principle: No player can make
profitable deviation in one single period

I Consider 1 (offering x): She cannot get more than x , and if
her offer is rejected she gets δ21x < x

I Consider 2 (pondering the offer of x): Accepting it, she gets
1− x = δ2(1− δ1)/(1− δ1δ2). But refusing it, she also gets
δ2(1− y) = δ2(1− δ1)/(1− δ1δ2)

I Similar arguments apply to player 2 offering y , and player 1
pondering that offer



Infinite sequential bargaining (contd.)
Let’s prove that this SPNE is unique

I Define v1, v1, respectively, as the lowest and highest
continuation value that 1 can get in any SPNE (starting at a
period when she makes an offer)

I Assume 2 makes an offer: She can get at least (1− δ1v1) and
at most (1− δ1v1)

I Assume 1 makes an offer: She must offer at least δ2(1− δ1v1)
to player 2

I So it must hold: v1 ≤ 1− δ2(1− δ1v1)
I Therefore: v1 ≤ (1− δ2)/(1− δ1δ2)
I By the same token, 2 will certainly accept more than
δ2(1− δ1v1)

I So it must hold: v1 ≥ 1− δ2(1− δ1v1)
I Therefore: v1 ≥ (1− δ2)/(1− δ1δ2)
I It follows that: v1 ≤ (1− δ2)/(1− δ1δ2) ≤ v1
I But as v1 ≤ v1 by definition, we must have:

v1 = v1 = (1− δ2)/(1− δ1δ2) (Q.E.D.)



Infinite sequential bargaining (contd.)
Discussion of the equilibrium characteristics

I This equilibrium turns out to be efficient, i.e., no time is
wasted in bargaining

I It pays to be patient:
I Payoff of 1 increasing in δ1 and decreasing in δ2
I As δ1 → 1, also x → 1

I First-mover advantage:
I If δ1 = δ2 = δ: x = 1/(1 + δ) > δ/(1 + δ) = 1− x


